On Generating Functions for Boole Type Polynomials and Numbers of Higher Order and Their Applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Functions for Special Polynomials and Numbers Including Apostol-type and Humbert-type Polynomials

The aim of this paper is to give generating functions and to prove various properties for some new families of special polynomials and numbers. Several interesting properties of such families and their connections with other polynomials and numbers of the Bernoulli, Euler, Apostol-Bernoulli, ApostolEuler, Genocchi and Fibonacci type are presented. Furthermore, the Fibonacci type polynomials of ...

متن کامل

-Genocchi Polynomials and Numbers of Higher Order

Copyright q 2010 Lee-Chae Jang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We investigate several arithmetic properties of h, q-Genocchi polynomials and numbers of higher order.

متن کامل

Higher-order Changhee Numbers and Polynomials

In this paper, we consider the higher-order Changhee numbers and polynomials which are derived from the fermionic p-adic integral on Zp and give some relations between higher-order Changhee polynomials and special polynomials. 366 Dae San Kim, Taekyun Kim, Jong Jin Seo and Sang-Hun Lee

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Fourier series of higher-order Bernoulli functions and their applications

In this paper, we study the Fourier series related to higher-order Bernoulli functions and give new identities for higher-order Bernoulli functions which are derived from the Fourier series of them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2019

ISSN: 2073-8994

DOI: 10.3390/sym11030352